EECS 3216 FINAL PROJECT
REPORT

Robotic Arm Anti-Explosive Scanning System

Oloruntimilehin Olajonlu 218863761
Mavra Muzmmal 219075969
Dhwani Soni 218978262

Bhavneet Kaur 218501361
Prabhpreet Singh 218416982

Contents

L. INErOAUCTION ..t 2
2. SYSLEIM DIESIGN. . ettt b e 2
2.1 Embedded System INtegration...........ccocveiieiieiieiiieiiecieeseesee e 2
2.2 Hardware INteZrationcocviiiiiiiiiiiiiie e ssien s siiee s st 4
2.3 Software Implementation...........ouviiiiiiieiiiiee e 5
2.4 SENSOTS & ACTUALOTS. ..eeeittiieitiie e et e ettt e et ettt e et e e e st e e e snne e e s anbee e e nnneee s 7
2.5 Input and Output MEChaniSMScccuvvviiiiiiiieiie e 7
3. Functionality & Performance...........cccooovoiiiiiiiiiiien e 8
3.1 FUNCHIONAIIEY 1.vvvieiiiee st e e sae e 8
3.2 Performance Evaluation............cccccoiiiiiiiiiiiiiiic e 9
4. Testing & Valldationccvoiiiiiiieiic e 9
4.1 TESt COVEIAZE. ... vviiiiieieiiiie ettt e e 9
4.2 Validation RESUILSccviiiiiiiiiiiiciie s 10
5. Advanced Topic & INNOVALIONcccvviiiiiiiiiiiie e 10

(ST 00)8 To] 1113 To) s KRR 11

1. Introduction

The Robotic Arm Anti-Explosive and Environmental Scanning System is an intelligent
automation solution built to identify potential threats and monitor environmental metrics in real-
time. The system combines an loT-connected embedded controller with a five-servo robotic arm
to scan vehicles, detect hazardous materials, and log relevant data such as air quality indices. The
project integrates a range of technologies including servo motor control, real-time camera input,
environmental sensing, cloud-based data logging, anomaly detection using Al, and an interactive
web dashboard for user interaction. Designed with safety and modularity in mind, the robotic
platform was developed to minimize human exposure at border checkpoints while enabling
dynamic environmental surveillance.

1. System modeling techniques — Hybrid modeling of discrete scan states and continuous
servo motion.

2. Embedded & cyber-physical integration — Seamless communication among camera,
MCU, servo driver, and web interface.

3. Digital system design — Use of microcontrollers (Pi Pico, Pi 4) and hardware
accelerators (PCA9685) for real-time motion.

4. Sensors & actuators interfacing — Integration and calibration of camera, servos, limit
switches, and joystick.

5. Testing & validation methodologies — Unit tests, hardware-in-loop tests, and
performance benchmarks.

6. Concurrent system models — Multi-threaded architecture (Flask server, camera capture,
joystick input, scan routines).

Project Aim: Automate vehicle scanning via a 6-DOF robotic arm, detecting pre-placed ArUco
tags on cars to flag potential explosives, log results, and present analytics.

2. System Design
2.1 Embedded System Integration

o Hardware evolution: Originally used FPGA to control servos, but ported to Raspberry
Pi Pico and ultimately Raspberry Pi 4 due to USB camera requirements and Python
support.

e MCU platform: Raspberry Pi 4 runs Flask (Python), OpenCV, and PyGame for joystick.

e Servo control: PCA9685 I°C servo controller handles PWM signals for five servos
(Base, Shoulder, Elbow, Wrist, Gripper).

The Raspberry Pi communicates over 12C with PCA9685 using the Python libraries. The
servos are initialized in server.py as follows:

= busio.I2C(board.SsCL, board.SDA)
= PCA9685(12cC)
frequency = 50

base servo.Servo(pca.channels|[9])
shoulder servo.servo(pca.channels[1])
elbow servo.Servo(pca.channels[2])

wrist servo.Servo(pca.channels[3])
gripper servo.servo(pca.channels[4])

servo positions

"Base":

o Control flow:
1. User action (web UI click or joystick) — HTTP/WebSocket or PyGame event
2. Flask thread triggers move or scan routine

3. Video frames captured via USB camera — OpenCV ArUco detection

b

Computed angles sent over I?°C to PCA9685 — servos move smoothly

Camera Feed Environmental Sensors

(USB Webcam) (e.g., Temp, Gas)
Live Video Frames ISensor Readings
Web User Interface Joystick Controller Al Vision: ArUco Tag Detection Al Anomaly Detection
(Browser Dashboard) (User Input Device) (OpenCV) (Environment Data)

Anomaly Flag/Data

Control Commands (HTTP) Video Stream & Results (HITP)XManual Joystick Input Detection Result

Flask Server & Control Logic
(Raspberry Pi 4)

é{‘vo Control {IZNO@] to Excel (Timestamp, Plate, etc)

Servo Driver Scan History Log
(PCA9685 PWM Module) (Excel File)
PWM Signals

Robotic Arm Servos
(6-DOF Arm)

2.2 Hardware Integration

e Robotic arm structure: 6 DOF machined from plywood for compactness; custom base
to accommodate all joints.

e Servos: TowerPro MG90S, powered by a separate 5 V supply with decoupling capacitors
to prevent voltage drops.

o Camera: Logitech C270, USB 2.0, configured to 640x480 @ 30 fps.
o Joystick: Standard USB gamepad accessed via PyGame library for manual override.

o Limit switches: Mounted at base and shoulder to prevent over-rotation, wired to
Raspberry Pi GPIO with pull-ups.

e Power distribution: Dedicated 5 V rail for servos; Pi 4 powered separately to avoid
noise coupling.

Camera

Robotic arm

Rasberry Pi

2.3 Software Implementation
o Flask Web Server: Endpoints:

e /—main control page with MJPEG video feed and scan buttons
e /video feed — streams frames

e /move — triggers move/scan thread

e /progress — reports scan progress and detection

e /history — displays scan log

e /graph — plots safe vs explosive counts

Aruco detection: OpenCV ArUco module at ~15 fps; overlays marker IDs and bounding
boxes.

Motion routines:

e move smoothly to position() — linear interpolation over 50 steps for each servo

move smoothly to position(target pos, duration=2):
steps = 50

sleep time = duration / steps

for step in range(1, steps + 1):

for joint, tgt in target pos.items():

cur = servo positions[joint]

servo_positions[jolint] = cur + (tgt - cur) * (step / steps)
update_servos()
time.sleep(sleep time)

e smooth wrist movement() — back-and-forth scan motion

smooth wrist movement(start, end, duration):
steps = 160

sleep time = duration / steps

for 1 in range(steps + 1):

servo positions["Wrist"] = start + (end - start) * (i / steps)
update_servos()
time.sleep|(sleep t ime)|

Optimizations:
e Pre-allocated JPEG buffers to reduce GC pauses
e Batched I>C writes every 50 ms
e Daemon threads for camera, joystick, scan tasks to avoid blocking

e PID control loop in software to eliminate servo jerk during rapid moves

2.4 Sensors & Actuators

Camera Module: Mounted above the arm’s gripper, calibrated for lens distortion to
improve marker detection accuracy.

ArUco Markers: 4x4 fiducial markers (IDs 0-3) printed and placed on various parts of
the test vehicle to represent potential explosive placement points.

Servos: Each servo’s range and zero-position offsets are calibrated and stored in a config
file. This compensates for mechanical backlash and ensures accurate repeatable
positioning.

Limit Switches: Act as emergency stop triggers; an ISR (interrupt service routine) halts
all motion within ~50 ms of a limit switch being hit to prevent mechanical strain.
Joystick Input: The joystick’s analog axes are mapped to the Base, Shoulder, Elbow, and
Wrist joints, and buttons are mapped to open/close the gripper. This allows intuitive
manual control for testing and calibration.

2.5 Input and Output Mechanisms

Input Capture vs. Output Compare: In microcontroller terminology, input capture refers to
detecting and timestamping external input events, while output compare refers to generating
specific output signals when a timer reaches a set value. Our system leverages these concepts in

practice through its handling of sensor inputs and control outputs.

Input Capture in the System: The robot continuously captures input from various
sources: the user’s web commands, joystick movements, limit switch signals,
environmental sensor readings, and camera frames are all forms of input data that the
system must detect and process. For example, reading the joystick state via PyGame and
detecting a limit switch trigger via a GPIO interrupt are akin to an input capture process —
the system registers an external event or value and uses it to inform control decisions.
The camera feed can also be seen as continuous input capture of images (at ~30 Hz)
which are processed to detect ArUco markers. These inputs ensure the system is aware of
user commands and environmental conditions. Notably, the limit switches and joystick
act as real-time input capture mechanisms: the limit switches provide immediate
feedback to stop motion when triggered, and the joystick provides on-the-fly manual
control data.

Output Compare for Servo Control: The concept of output compare is reflected in how
we generate PWM output signals for the servos. Rather than manually toggling GPIO
pins in software, the project uses the PCA9685 hardware module to produce the servo
control pulses. The PCA9685 effectively offloads the timing generation: it compares an
internal timer to target compare values to output 50 Hz PWM signals with the desired
duty cycle for each servo channel. This is analogous to a microcontroller’s output
compare unit driving a waveform. In early prototypes, the FPGA or Pi Pico’s timers were

considered for direct servo PWM generation; in the final design, the dedicated servo
driver provides stable output compare functionality. Each servo’s target angle is
converted to a corresponding pulse width, and the PCA9685 outputs that pulse train
continuously. This hardware-timed output ensures smooth and flicker-free servo
motion, crucial for precise arm control. The output compare principle is also evident in
other actuations (for instance, if an alert buzzer or LED were used, the timing of those
signals could be managed similarly). By utilizing input capture concepts for reading
sensors and output compare for driving actuators, the system achieves reliable closed-
loop control.

3. Functionality & Performance

3.1 Functionality

Automated scan: Pre-programmed routines cover scanning of 4 fixed car positions (e.g.,
front, back, sides). A “Scan All” feature triggers sequential scans of all positions in order.
The arm moves through each preset position, pausing to sweep the wrist and allow the
camera to detect any marker.

Manual control: Real-time joystick control is available for manual operation. This mode
is used for troubleshooting or precise alignment — moving the arm’s joints directly with
joystick axes and operating the gripper via buttons. It provides a fallback to scan areas
that the automated routine might miss and aids in system calibration.

Logging & Analytics: Results of each scan are logged to an Excel file
robotic_arm_scans.xlIsx on the system, and a web-based graph displays the percentage
of scans where an explosive was detected (versus safe scans). (Each log entry in the
Excel file includes the scan timestamp, the vehicles plate number, a Boolean flag for
explosive_detected, and the scan duration in seconds for that scan.) This history can be
viewed via the web UI (“History” page) and provides traceability and data for
performance analysis.

Robotic Arm Anti-Explosive Scan

[Explosive at RJ14 PQ 1122 (Car4)

3.2 Performance Evaluation

Key performance metrics were evaluated to ensure the system meets real-time scanning
requirements:

Metric Method Result

Camera-to-servo latency Timestamp logging 120 ms £ 15 ms (n = 30)
Positioning accuracy Photogrammetry +1.5° average (10 trials)
Frame-processing rate OpenCV FPS counter 15 fps on P1 4

Reliability (50 scans) Overnight automated script 100% success, no failures

4. Testing & Validation

4.1 Test Coverage

o Unit tests: Key functions were individually tested. For example,
move_smoothly to position() was given boundary angle inputs (0° and 180°) to ensure
proper handling, and smooth_wrist movement() was verified to execute the full back-
and-forth sequence as intended. Additionally, a mock I>C interface was used to verify that

the correct registers on the PCA9685 are written (ensuring servo commands are issued
correctly).

e Hardware-in-loop: An automated script moved the arm until limit switches engaged to
verify the emergency stop ISR. This confirmed that when a limit switch is hit, the system
stops the motors within the expected <50 ms and flags the event appropriately.
Integration tests also checked that the camera feed, detection algorithm, and servo
motions operate in concert without race conditions

4.2 Validation Results

Several end-to-end test scenarios were conducted to validate system functionality against
expected outcomes:

Test Expected Measured
N

No-tag frame © Pass
overlay
Correct

Single tag (@45° rotation ID Pass
displayed

. . Angl
Joystick gripper close/open 001;5 Oeo - Pass

5. Advanced Topic & Innovation

One innovative extension we explored was integrating a TinyML-based anomaly detection
module on the Pi 4 to monitor the servo motor current draw in real time. A lightweight neural
network model was trained to recognize the normal current profile of the servos and flag
anomalies. If an abnormal spike or stall in current was detected (indicative of a stalled or
jammed servo), the system would halt the arm to prevent damage. This micro-Al safety feature
successfully flagged overcurrent conditions and halted the arm, reducing stall incidents and
potential overheating. This demonstrates how Al can enhance the robustness of the system
beyond the primary vision task.

Additionally, the architecture is amenable to environmental monitoring as an extension. By
interfacing environmental sensors (for temperature, gas, etc.) and applying a similar anomaly
detection approach, the system could also flag hazardous environmental conditions (e.g.

detecting chemical fumes or extreme heat near the vehicle). Such an Al-driven sensor fusion

would broaden the system’s scope to an “Environmental Scanning” capacity in line with the
project’s name. This remains a promising area for future development.

6. Conclusion

In conclusion, the Robotic Arm Anti-Explosive Scanning System successfully demonstrated a
cyber-physical solution for automated threat detection. The integration of a 6-DOF robotic arm
with computer vision (ArUco marker detection) and a web-based interface proved effective in
scanning vehicles for marked threats without direct human intervention. The system met its
design objectives, achieving reliable detection of simulated explosives and logging each scan for
accountability. By combining real-time sensor input capture with precise output control of
actuators, the project highlights a viable approach to enhancing security at checkpoints while
keeping personnel out of harm’s way. The modular design and inclusion of Al-based
enhancements (vision and anomaly detection) also provide a foundation for future expansion into
broader environmental scanning and more advanced automated inspection tasks.

Overall, the project showcases a successful blend of embedded hardware control, software
intelligence, and user-interface design to address a critical safety challenge.

